Vertical and in-plane heterostructures from WS2/MoS2 monolayers
نویسندگان
چکیده
منابع مشابه
Vertical and in-plane heterostructures from WS2/MoS2 monolayers.
Layer-by-layer stacking or lateral interfacing of atomic monolayers has opened up unprecedented opportunities to engineer two-dimensional heteromaterials. Fabrication of such artificial heterostructures with atomically clean and sharp interfaces, however, is challenging. Here, we report a one-step growth strategy for the creation of high-quality vertically stacked as well as in-plane interconne...
متن کاملPhoto-thermionic effect in vertical graphene heterostructures
Finding alternative optoelectronic mechanisms that overcome the limitations of conventional semiconductor devices is paramount for detecting and harvesting low-energy photons. A highly promising approach is to drive a current from the thermal energy added to the free-electron bath as a result of light absorption. Successful implementation of this strategy requires a broadband absorber where car...
متن کاملVertical Electron Transport in GaN/AlGaN Heterostructures
Nonequilibrium dc and large-signal ac vertical electron transport in GaN/AlGaN heterostructures is investigated by Monte Carlo simulations. The symmetric two-barrier GaN/AlGaN heterostructures are studied. The results of simulations show that polarization charges have a profound effect on dc and large-signal ac characteristics of vertical electron transport in GaN/AlGaN heterostructures. Under ...
متن کاملGraphene-BN Heterostructures: An In-Plane Transistor
Graphene-Boron Nitride (G-BN) heterostructures can lead to the realization of nanoscale electronics that will be smaller than the dimensional limit—14 nanometers—of silicon transistors and provide higher mobilities. However, the grapheneboron nitride heterostructure although self-insulating, cannot function as a transistor alone due to not having a second conducting pathway. Thus, the utilizati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Materials
سال: 2014
ISSN: 1476-1122,1476-4660
DOI: 10.1038/nmat4091